
Polyhydric alcohols such as glycols and mannitol produce a similar result:

Medicinal or Pharmaceutical Use: Pharmaceutical aid and local anti- infective.

2. HYDROCHLORIC ACID, HCl

Hydrochloric acid is prepared by dissolving hydrogen chloride gas in water.

Preparation of Hydrogen Chloride.

1. Hydrogen chloride may be made by reacting sodium chloride (common salt) with sulphuric acid. The reaction takes place in two steps.

 $NaCl + H_2SO_4 \longrightarrow NaHSO_4 + HCl$ Sodium bisulphate $NaHSO_4 + NaCl \longrightarrow Na_2SO_4 + HCl$ Sodium sulphate (salt cake)

The hydrogen chloride in the first step above known as the 'pan acid' is comparatively more pure whereas the hydrogen chloride obtained in the second step along with the salt cake is less pure and is known as 'muriatic acid' of commerce. Muriatic acid is a yellow liquid.

$$Ag^{+} + 2NH_{3} \rightleftharpoons [Ag(NH_{3})_{2}]^{+}$$
$$Cu^{2^{+}} + 4NH_{3} \rightleftharpoons [Cu(NH_{3})_{4}]^{2^{+}}$$

The copper molecular complex, that is the ammoniacal solution of cupric hydroxide known as cuoxam is used as reagent for cellulose, that is for cotton which contains almost pure cellulose. Cellulose is soluble in cuoxam.

Strong Ammonia Solution is official in B.P. '88 and also in I.P.'66 as Ammonia Solution Strong.

Tests for Identity

Official

- 1. Dilute freely with water. The solution produced is strongly alkaline (which may be tested with red litmus or any other suitable indicator).
- 2. Dip a glass rod in hydrochloric acid and keep it near the surface of the solution. Dense white fumes are produced (this is due to the formation of ammonium chloride).

Non-official

When Nessler's regeant (alkaline potassium mercuri-iodide solution) is added to Ammonia Solution Strong, a yellow to brown colour or precipitate is formed.

Standard: Contains not less than 27 per cent w/w and not more than 30 per cent w/w of NH_3 .

Storage Condition: Since ammonia volatilises from solution at room temperature, Strong Ammonia Solution should be stored in a well-closed container at a temperature not exceeding 20°C.

Chemical Incompatibility

As ammonia is a base, it is incompatible with acids. It is also incompatible with salts of metals such as iron, zinc and copper precipitating their hydroxides. Alkaloidal salts like quinine hydrochloride or strychnine hydrochloride are decomposed by the contains about 1.7 g of calcium hydroxide in 1 litre of water, that is solubility is 0.17% w/v and the solubility is reduced when the solution is heated. The solubility can be increased to 26 g per litre or 2.6 per cent if the calcium hydroxie is dissolved in 10 per cent sucrose solution. The increased solubility is due to the formation of calcium sucrosate. Calcium hydroxide is insoluble in alcohol. Aqueous solution of calcium hydroxide is alkaline to phenolphthalein and other common indicators.

Calcium hydroxide solution neutralizes acids forming the corresponding calcium salts.

 $Ca(OH)_2 + 2HCI \longrightarrow CaCl_2 + 2H_2O$

Calcium hydroxide solution (lime water) absorbs carbon dioxide and forms calcium carbonate.

$$Ca(OH)_2 + CO_2 + H_2O \longrightarrow CaCO_3 + 2H_2O$$

This is the reaction in which lime water is turned milky by the passing of carbon dioxide. This is a test for carbonates and bicarbonates.

When calcium hydroxide is strongly heated, calcium oxide is formed.

$$Ca(OH)_2 \xrightarrow{\Delta} CaO + H_2O$$

It is official in I.P.

Official Tests for Identity

A solution of the sample in acetic acid gives the reactions of calcium (see Chapter 13).

Standard: It contains not less than 90% of Ca (OH)₂.

Storage Condition: Since it absorbs carbon dioxide from the atmosphere and is converted into calcium carbonate, it must be stored in tightly closed containers.

Chemical Incompatibility: Since it is a weak base, it will react with acids. However this is turned into an advantage in the preparation of zinc cream. In this the calcium hydroxide solution is reacted with oleic acid to form calcium oleate which, being a divalent soap, produces a water in oil emulsion of the arachis oil and water.

$$Zn + 2H_3PO_2 \longrightarrow Zn(H_2PO_2)_2 + H_2^{\uparrow}$$

$$H_3PO_2 + Na_2CO_3 \longrightarrow 2NaH_2PO_2 + H_2O + CO_2^{\uparrow}$$

It is a powerful reducing agent.

When it is treated with copper sulphate solution and heated to 60° C, a reddish precipitate of cuprous hydride is formed.

$$2CuSO_4 + 2H_3PO_2 + 4H_2O \longrightarrow 2H_3PO_4 + Cu_2H_2\downarrow$$

Cuprous hydride
$$+ 2H_2SO_4 + H_2\uparrow$$

When the solution is boiled, the cuprous hydride decomposes to metallic copper and hydrogen.

When it is mixed with acidified potassium permanganate solution, it reduces the permanganate and the pink colour is discharged.

$$5H_3PO_2 + 4KMnO_4 + 6H_2SO_4 \longrightarrow 2K_2SO_4 + 4MnSO_4 + 5H_3PO_4 + 6H_2O.$$

Mercuric chloride mixed with hypophosphorus acid is reduced first to white mercurous chloride and finally to mercury.

On strong heating, it decomposes to phosphorous acid and phosphine.

$$3H_3PO_2 \xrightarrow{\Delta} PH_3\uparrow + 2H_3PO_3.$$

Phosphine Phosphorous acid.

Storage Condition: Since it is a powerful reducing agent, it will react with oxygen of the atmosphere and get oxidised. So it must be kept in tightly closed containers.

Chemical Incompatibility: As a strong acid, it will react with all bases and alkalis. Secondly it is a reducing agent and will reduce any substance prone to reduction and also all oxidizing agents.

Medicinal or Pharmaceutical Use: Its use in pharmacy is only as a reducing agent. Thus it is used in Syrup of Ferrous lodide preparation. Here all the ferric iodide present is reduced to ferrous iodide by the hypophosphorous acid so that the preparation contains only ferrous iodide.

CONTENTS

CHAPTER			Page	
	SECTION A - THEORY			
1.	Acidity, Basicity, pH and Buffers	•••	1	
2.	Chemistry of Some Acids and Bases of Medicinal or Pharmaceutical Importance	•••	6	
	1. Boric Acid		6	
	2. Hydrochloric Acid		9	
	3. Strong Ammonia Solution		12	
	4. Sodium Hydroxide		15	
	5. Calcium Hydroxide		18	
3.	Antioxidants	•••	21	
	1. Hypophosphorous Acid		21	
	2. Sulphur Dioxide		23	
	3. Sodium Bisulphite		24	
	4. Sodium Metabisulphite		26	
	5. Sodium Thiosulphate		27	
	6. Sodium Nitrite		30	
	7. Nitrogen		32	
4.	Gastrointestinal Agents	•••	35	
	A. Acidifying Agent Dilute Hydrochloric Acid		35 35	
	B. Antacids		36	
	1. Sodium Bicarbonate		36	
	2. Calcium Carbonate		37	
	3. Magnesium Carbonate (Heavy and Light)		39	

CHAPTER

		4. Magnesium Oxide (Heavy & Light)		41
		5. Magnesium Trisilicate		43
		6. Aluminium Hydroxide Gel		44
		7. Aluminium Phosphate		45
		8. Combinations of Antacids		46
	C.	Protectives and Absorbents		47
		1. Bismuth Subcarbonate		48
		2. Kaolin		49
	D.	Saline Cathartics		50
		1. Sodium Potassium Tartrate		50
		2. Magnesium Sulphate		51
5.	То	pical Agents	•••	54
	A.	Protectives		54
		1. Talc		54
		2. Zinc Oxide		55
		3. Calamine		57
		4. Zinc Stearate		58
		5. Titanium Dioxide		59
		6. Silicone Polymers		60
		Activated Dimethicone		61
	B.	Antimicrobiais and Astringents		62
		1. Hydrogen Peroxide		63
		2. Potassium Permanganate		66
		3. Bleaching Powder		69
		4. Iodine		70
		The Iodine Solutions		74
		Povidone – Iodine		76

Cł	HAPTER		Page
	5. Boric Acid		77
	6. Borax		77
	7. Silver Nitrate		79
	8. Mild Silver Protein		81
	9. Mercury		82
	10. Yellow Mercuric Oxide		84
	11. Ammoniated Mercury		85
	C. Sulphur and its Compounds		87
	1. Sublimed Sulphur		87
	2. Precipitated Sulphur		89
	3. Selenium Sulphide		89
	D. Astringents		90
	1. Alum		90
	2. Zinc Sulphate		92
6.	Conusmer Dental Products	•••	93
	1. Sodium Fluoride		93
	2. Stannous Fluoride		94
	3. Calcium Carbonate		94
	4. Sodium Metaphosphate		94
	5. Dicalcium Phosphate		95
	6. Zinc Chloride		96
	7. Strontium Chloride		96
7.	Inhalants and Respiratory Stimulants	•••	98
	A. Inhalants		98
	1. Oxygen		98
	2. Carbon Dioxide		100
	3. Nitrous Oxide		102

CHAPTER			Page	
	B.	Respiratory Stimulant		103
		Ammonium Carbonate		103
8.	Ex	pectorants, Emetics and Antidotes	•••	106
	A.	Expectorants and Emetics		106
		1. Ammonium Chloride		106
		2. Potassium Iodide		108
		3. Antimony Potassium Tartrate		109
	В.	Antidotes		110
		Sodium Nitrite		110
9.	M	ajor Intra and Extracellular Electrolytes	•••	111
	Ele	ectrolyte Balance		111
		1. Sodium Chloride		113
		2. Official Preparations of Sodium Chloride		115
		a. Sodium Chloride Injection, I.P.		116
		b. Sodium Chloride Hypertonic Injection, I.P.		116
		c. Compound Sodium Chloride Injection, I.P.		116
		d. Compound Sodium Chloride Solution, I.P.		117
		e. Sodium Chloride and Dextrose Injection, I.P.		117
		3. Potassium Chloride		117
		4. Official Preparations of Potassium Chloride		118
	Ac	id Base Balance		119
	Po	tassium		119
		1. Sodium Acetate		119
		2. Potassium Acetate		121
		3. Sodium Bicarbonate		122
		Sodium Bicarbonate Injection		122

CHAPTER	Page
4. Sodium Citrate	122
5. Potassium Citrate	124
Sodium Lactate	125
6. Sodium Lactate Injection I.P.	125
7. Ammonium Chloride	126
8. Ammonium Chloride Injection	126
Combination of Oral Electrolyte Powders and Solutions	126
10. Inorganic Official Compounds of Iron, Iodin	e
and Calcium	129
I. Inorganic Official Compounds of Iron	129
1. Ferrous Fumarate	129
2. Ferrous Gluconate	130
3. Ferrous Sulphate	131
4. Dried Ferrous Sulphate	133
5. Iron and Ammonium Citrate	133
II. Inorganic Official Compounds of Iodine	135
1. Iodine	135
2. Potassium Iodide	135
III. Inorganic Official Compounds of Calcium	136
1. Calcium Carbonate	136
2. Calcium Chloride	136
3. Calcium Gluconate	137
4. Calcium Hydroxide	139
5. Dibasic Calcium Phosphate	139
6. Tribasic Calcium Phosphate	139
11. Radio Pharmaceuticals and Contrast Media	141
I. Atomic Structure	141
II. Isotopes	142

CHAPTER		Page	
1. Impurities in Pharmacopoeial Sources of Impurities in Pharm)	
Substances.)	
2. Limit Tests			
Limit Tests for Acid Radical I	mpurities 163	5	
A. Limit Test for Chlorides	163	5	
B. Limit Test for Sulphates	164	Ļ	
Limit Tests for Basic Radical I	Impurities 166)	
A. Limit Test for Iron	166	,)	
B. Limit Test for Heavy Met	als 167	'	
C. Quantitative Test for Lead	d 169)	
D. Limit Test for Arsenic	171		
13. Official Identification Tests for Au	nions		
and Cations	174	ŀ	
Identification Tests for Anions		-	
Identification Tests for Cations)	

SECTION B - PRACTICAL

14. Identification Tests for Some Inorganic		
Official Compounds	•••	186
A. Ammonium Chloride		186
B. Sodium Bicarbonate		188
C. Sodium Thiosulphate		190
D. Sodium Nitrite		191
E. Dicalcium Phosphate		192
F. Magnesium Carbonate		195
G. Magnesium Sulphate		197
H. Zinc Oxide		198
I. Zinc Sulphate		199
J. Ferrous Sulphate		200
K. Alum		201
L. Potassium Iodide		203

XIII

.-

CHAPTER		Page
15. Limit Tests	•••	205
Limit Test for Chlorides		205
Limit Test for Sulphates		207
Limit Test for Iron		209
Limit Test for Heavy Metals		212
Limit Test for Arsenic		216
16. Quantitative Analysis of Inorganic Compounds	•••	220
1. Assay of Sodium Bicarbonate		230
2. Assay of Ammonia Solution Strong		232
3. Assay of Boric Acid		233
4. Assay of Ammonium Chloride (I.P. 1985)		235
5. Assay of Hydrogen Peroxide Solution		239
6. Assay of Ferrous Sulphate		240
7. Assay of Iodine Solution (Weak and Strong)		243
8. Assay of Chlorinated Lime		244
9. Assay of Sodium Chloride Injection		249
10. Assay of Ammonium Chloride (I.P. 1966)		250
11. Assay of Magnesium Sulphate		252
12. Assay of Calcium Gluconate		254
17. Some Hints of Practical Work and Recording	•••	257
18. Model Question Paper - Theory		261
19. Some Typical Examination Questions in Practical	•••	264

SOLUBILITY DESCRIPTIONS

The solubility descriptions in this book denote the following ranges :

Description	Approximate quantities of solvent by volume required to dissolve 1 part of solute by weight.
Very soluble	Less than 1 part
Freely soluble	From 1 to 10 parts
Soluble	From 10 to 30 parts
Sparingly soluble	From 30 to 100 parts
Slightly soluble	From 100 to 1,000 parts
Very slightly soluble	From 1,000 to 10,000 parts
Practically insoluble	More than 10,000 parts