Contents

Foreword	V
Preface	vii
CHAPTER 1	
Water, Amino Acids and Peptides	1
1. Describe the properties of water that make it most fit solvent in biological systems	1
2. What is pH and pKa? What is their physiological and clinical significance?	
3. What is viscosity and hyperviscosity syndrome?	
4. What is selenocysteine? How is it incorporated into proteins?	9
5. Which is the 22nd amino acid?	
6. What is isoelectric point or isoelectric pH? How to calculate isoelectric pH of amino acids?	13
CHAPTER 2	
Protein Chemistry, Structure and Function	16
1. What are the biological functions of proteins?	16
2. Differentiate between configuration and conformation.	
3. What are unstructured proteins?	
4. What is salting in and salting out? Why ammonium sulphate is most commonly used for this	
purpose?	23
5. What are disulfide bonds? How are they formed and what is their significance in protein	27
structure?	
6. Distinguish between peptides and proteins. Give examples of some important peptides	
7. What are domains, folds, motifs and supersecondary structures?	
8. What is the physiological function of myoglobin?	
9. Describe the role of haemoglobin in the action of nitric oxide.	44

CHAPTER 3

	Enzymes	46
1.	Describe enzyme classification.	46
	Differentiate between co-factor, co-enzyme and prosthetic group.	
	Enumerate various mechanisms of catalysis.	
4.	Differentiate between general and specific acid-base catalysis.	47
	Give examples of enzyme functioning by covalent catalysis.	
	Differentiate between Fischer's 'lock and key model' and Koshland's 'induced fit model' of	
	enzyme action.	48
7.	What are conserved residues in enzymes?	48
	How can enzymes be used to measure blood glucose in lab?	
9.	Give examples of functional enzymes of blood.	49
10.	How is measurement of levels of non-functional enzymes of blood useful?	49
11.	What are ribozymes? Give examples of ribozymes.	49
12.	What are irreversible and reversible reactions?	50
13.	How reactions can become functionally irreversible under physiological conditions?	50
14.	What is the relation between ΔG , K_{eq} and speed of reaction?	50
15.	What are the factors on which reaction rate depends?	50
16.	Describe how changes in temperature affect rate of enzyme catalysed reaction.	51
	How change in pH can affect rate of enzyme catalysed reactions?	51
18.	Why is the V_i or the initial rate/velocity of reaction used to study effect of substrate	
	concentration on enzyme activity?	51
19.	Describe how can we study the effect of substrate concentration on reaction rate of a multi-	
	substrate reaction.	52
20.	Enumerate the different types of graphs used to study the relation of V_i versus substrate	
	concentration.	
	Describe organophosphate poisoning.	
	What are allosteric enzymes?	
	What is passive regulation of enzyme activity?	
	Why metabolite flow in most metabolic pathways tends to be unidirectional?	5 /
43.	How can compartmentation/separation of anabolic and catabolic pathways involving same metabolites can be achieved?	57
26	What is rate limiting enzyme of a pathway?	
	How are intracellular enzymes degraded?	
	In what ways can hormones regulate metabolic enzymes?	
	Give examples of different covalent modifications that can regulate enzyme activity.	
	What are the advantages of activation by selective proteolysis of pro-enzyme?	
	What are the advantages of covalent modification by phosphorylation?	
	What are isoenzymes? Describe with examples the significance of isoenzymes in our body	
	CHAPTER 4	
	Bioenergetics and Oxidative Phosphorylation	60
1.	What reaction is catalysed by myokinase and what is its advantage?	60
	What is the difference between ΔG° , $\Delta G^{\circ\prime}$ and ΔG ? Elaborate with an example.	
	How both catabolic and anabolic reactions are made spontaneous or favourable in our body?	
	Why the 'high energy phosphate bond' is misnomer or why ATP acts as energy currency	
	molecule?	63

	How ATP provides energy for endergonic reactions?	64
6.	What is the advantage of activation reactions such as acyl CoA synthetase converting ATP to	
	AMP rather than ADP?	
	Classify the enzymes involved in oxidation-reduction reactions giving example of each	
	Why names homogentisate oxidase and aldehyde dehydrogenase are misnomers?	
	What is hydroxylase cycle?	
	Why 2,4-DNP or 2,4-dinitrophenol is a banned drug?	69
11.	Describe agents which interfere with oxidative phosphorylation. What is the difference	
10	between uncouples and inhibitors of electron transport chain?	
	What is the mechanism and features of cyanide toxicity?	
	What are conditions which limit the rate of cellular respiration during exercise?	
	What are the different states of respiratory control?	12
15.	NADPH is required in synthetic reactions in cytosol. Give examples of some intra-mito-	72
16	chondrial reactions requiring NADPH	
	Enumerate some oxidants and free radicals that are produced in mitochondria.	
	Differentiate between glycerophosphate and malate aspartate shuttle.	
	Where else besides inner mitochondrial membrane is glutamate aspartate exchanger found	13
17.	and what is its function there?	74
20	Enumerate some of the transporters present in inner mitochondrial membrane.	
	What is the irreversible step in electron transport and how is its rate controlled?	
	Oxidative phosphorylation requires the transfer of electrons donated by NADH. (a) Is NADH	13
	imported directly into the mitochondria? Explain. (b) Enumerate two import mechanisms that	
	transfer cytosolic electrons from NADH into the mitochondrion. (c) Why is it important to	
	maintain a relatively constant level of cytosolic NAD ⁺ ?	75
23.	Explain how 1 NADH produces 2.5 ATP and 1 FADH2 produces 1.5 ATP and what is P/O ratio? .	
	CHAPTER 5	
	Carbohydrate Chemistry and Metabolism	77
	Enumerate the causes responsible for 'withdrawal' of carbohydrate from blood	
	Enumerate the causes for the 'release' of glucose by liver to the blood.	
3.	Give the biochemical basis of muscular cramps and pain associated with vigorous exercise	78
	Major source of energy in RBCs is anaerobic glycolysis although oxygen is present. Comment What is 'curd' formation?	
	Why are many adults intolerant to milk?	
	Galactose is highly toxic if transferase enzyme is missing. How?	80
		90
	with galactose-free diet cope up?	
	How anaerobic exercise training affects glycolysis in athletes?	00
10.	liver. Explain.	Q1
11	Enlist the proteins required to convert glucose-6-PO ₄ to glucose.	
	Differentiate between (a) lactulose and lactose; (b) dextrose and dextrin.	
	Differentiate between (a) facturose and factose; (b) dextrose and dextrin. Differentiate between glycolysis inhibition by arsenite and arsenate.	
	Differentiate between glycogen metabolism in liver and muscle.	
	Discuss the clinical significance of (a) enolase, (b) transketolase, (c) D-xylose, (d) 2-deoxy-	63
13.	fluoroglucose (FDG), (e) glucagon-like peptide (GLP)	27
	The contract (1 2 0), (c) Breedon the Pepine (ODI).	07

	Why is Butylated hydroxyanisole (BHA)/E320 added to packed food items?	
	Give examples of drugs for which liposomes are used for delivery.	
	What are the various factors regulating fatty acid synthesis?	
	Enumerate the essential fatty acids.	
	Which unsaturated fatty acids can be synthesized in human body?	
	How can diagnosis of essential fatty acid deficiency be confirmed by lab tests?	
	Explain giving examples the difference between suicide enzyme and suicide inhibition	
	How is fish oil protective against myocardial infarction (MI)?	
	Describe the beneficial actions of ω_3 and ω_6 fatty acids.	
	What is the role of liver X receptors in regulation of cholesterol metabolism?	
	How are apo B100 and apo B48 are produced from the same gene?	
	Which lipoprotein fraction does not move towards charged end in electrophoresis?	
	How do adipose tissue obtain glycerol-3-phosphate for TG synthesis?	
	Which phospholipase is involved in production of prostaglandins?	
	Which compounds contain ceramide?	128
34.	Intravenous imiglucerase or recombinant glucocerebrosidase is used in treatment of which	
	disease?	
	Which lipid storage disease causes severe demyelination?	129
36.	An 8-year girl was admitted for heart/liver transplant.	
	History: CHD in family; xanthomas appeared on legs when she was 2 years old; xanthomas appeared on elbows when she was 4 years old; admitted with MI symptoms when she was 7 years old (Total cholesterol = 1240 mg/dl; Triglycerides = 350 mg/dl; Total cholesterol of father = 355 mg/dl; Total cholesterol of mother = 310 mg/dl); 2 weeks after MI she had coronary bypass surgery; past year she had severe angina and second bypass; despite low-fat diet, cholestyramine and lovastatin therapy, total cholesterol = 1000 mg/dl. What is the likely diagnosis and bischemical explanation for these features?	120
27	What is the likely diagnosis and biochemical explanation for these features?	130
3/.	Describe briefly the function and consequences of defects in various apolipoproteins and	
	enzymes involved in lipoprotein/lipid transport. Explain with suitable examples the role of LDL and HDL in atherosclerosis. Which is more important – LDL or HDL?	125
	LDL and HDL in atheroscierosis. Which is more important – LDL or HDL?	133
	CHAPTER 7	
	Amino Acid and Heme Metabolism	143
1	What are nutritionally essential and non-essential amino acids?	143
2	How can nitrogen balance or protein balance be measured?	143
	Describe glycine metabolism and associated clinical implications.	
	Describe the unique characteristics of branched-chain amino acids metabolism.	
	Explain the biochemical basis of maple syrup urine disease and its management.	
	How is arginine synthesized in body?	
	How is nitrogen transported from tissues for its disposal?	
	How many ATPs are required to produce 1 molecule of urea?	
	How are amino acids transported across cell membranes?	
	Describe the biochemical basis of clinical features of urea cycle defects.	
	Explain biochemical basis of management of urea cycle defects.	
	What are the causes and effects of tetrahydrobiopterin deficiency? Explain the biochemical	101
12.		163
12	basis of management. What are the biological functions of heme degradation products – carbon monoxide and	103
13.	bilirubin/biliverdin?	164
	OHI UOHI VOI UNI VOI UHI (100

CHAPTER 8

	Nucleotide Metabolism	168
1.	Why pyrimidines and purines are called 'Bases'?	168
	What is the fate of nucleic acids and nucleotides consumed in diet?	
3.	What are the different biological functions of nucleotides?	171
4.	What is salvage pathway and what is its importance?	171
	Which reactions use PRPP and how its levels are regulated?	
	What is tumor lysis syndrome?	
7.	Describe regulation of purine synthesis and its clinical implications.	174
	Classify the different causes of hyperuricemia and explain the underlying biochemical basis	
	Discuss renal handling of uric acid and its clinical implications.	
10.	What is the role of alcohol in gout?	178
11.	Why is hypouricemic therapy not given during attacks of acute gout?	1/9
12.	deficiency)?	170
13	What is the physiological significance of β -alanine and β -aminoisobutyric acid (BAIBA)?	
	What is the difference between xanthine oxidase and xanthine dehydrogenase?	
17.	what is the difference between xandime oxidase and xandime denydrogenase.	101
	CHAPTER 9	
	Nutrition, Vitamins and Minerals	182
	•	
	What is thermic effect of food?	182
۷.	How are nutritional recommendations on quantities of different nutrients to be consumed	102
3	daily made?	183
٥.	if it is a coenzyme? Which other tests are used to detect folate deficiency?	18/
4	What is folate trap? Explain its biochemical basis.	
	Excessive intake of vitamin D can cause toxicity but excessive exposure to sunlight does not,	100
٥.	why?	187
6.	What are the different actions of vitamin D?	
	What is glycemic index and glycemic load?	
	What is protein quality and how is protein quality assessed?	
	What is the pharmacological application of niacin and its biochemical basis?	
	Enumerate nutritional/dietary factors related to risk of metabolic syndrome and cardiovascular	
	diseases.	196
	What are goitrogenic factors? How selenium deficiency affects thyroid function?	
12.	What are the different consequences of Iodine deficiency and their biochemical basis?	198
13.	What are the different consequences of iodine excess and their biochemical basis?	204
	CHAPTER 10	007
	Genetics	207
	What is DNA tautomerization and what is its significance?	
	What is DNA damage and mutation? What are differences between them?	
	Describe the different types of DNA damages and their causes.	
	What are the consequences of DNA damage/mutations?	
5.	What is photoreactivation?	217
6.	Why combination therapy is required in HIV treatment?	218

CHAPTER 14

	Organ Function Tests	313
1.	What is serum–ascites albumin gradient?	313
	What is the biochemical basis of development of ascites in cirrhosis?	
3.	How to distinguish pleural or other fluids as transudate or exudate by biochemical tests?	315
4.	Describe the utility of different biochemical tests in liver diseases.	316
5.	Describe the cell-based model of coagulation. Describe its advantages over the cascade/	
	waterfall model.	327
	CHAPTER 15	
	Immunology	338
1.	Describe the antiviral defence of innate immune system.	338
2.	Explain the biochemical basis of tolerance. Give some therapeutic applications of the	
	phenomena of tolerance.	
	Explain biochemical basis of autoimmunity, give examples of some autoimmune diseases	348
4.	How are transplant grafts rejected? Explain the immune mechanisms and describe the methods	
	used to prevent graft rejection.	
	What are superantigens?	
	What are isotypes, allotypes and idiotypes?	
7.	What are cryoglobulins and cold agglutinins?	369
	CHAPTER 16	
	Xenobiotic Metabolism, Antioxidants and Biochemistry of Ageing	373
1.	What are xenobiotics? How are they metabolized and what is the importance of their bio-	
	transformation?	
	What can be the harmful effects of xenobiotics?	
	How are xenobiotics metabolized?	376
4.	Give examples of the reactions of xenobiotic metabolism participating in metabolism of	
_	endogenous compounds.	
	Give examples of some xenobiotics activated during their metabolism.	
	What is the effect of caloric restriction on longevity?	386
7.	Describe the relative importance of various antioxidants. Why exogenous antioxidant	200
	supplements have little effect or may even be harmful?	388
	1	201