Contents

Prefa	асе	v
List	of Symbols	xv
List	of Abbreviations	xxiii
	1. INTRODUCTION	
1.1	Genesis of Electrical and Optical Communication	2
	1.1.1 Emergence of Optical Communication	3
	1.1.2 Evolution of Optical Fiber Communication	5
	1.1.3 Classification of Optical Communication Systems	9
	General Optical Fiber Communication System	10
	Advantages of Optical Fiber Communication	13
	Scope of the Book	14
1.5	Major Milestones	17
	Summary	19
	References	19
	2. OPTICAL FIBER FUNDAMENTALS AND FIBER CABLES	
2.1	Nature of Light and Related Theories	22
	2.1.1 Corpuscular Theory	23
	2.1.2 Wave Theory	23
	2.1.3 Maxwell's Electromagnetic Theory	24
	2.1.4 Quantum Theory	24
2.2	Fundamentals of Geometrical (or Ray) Optics	26
	2.2.1 Ray Theory	26
	2.2.2 Total Internal Reflection	27
2.3	Classification of Optical Fibers	33
	2.3.1 Step-Index (SI) and Graded Index (GI) Fibers	33
	2.3.2 Single-Mode and Multimode Fibers	35
2.4	Ray Optics Representation	38
	2.4.1 Meridional and Skew Rays	38
	2.4.2 Numerical Aperture (NA) and Acceptance Angle for Meridional Rays	38
	2.4.3 Acceptance Angle for Skew Rays	42
	2.4.4 Numerical Aperture of Graded-Index Fibers	44
2.5	Fiber Materials	45
	2.5.1 Glass Fibers	46
	2.5.2 Fluoride Fibers	47
	2.5.3 Active Glass Fibers	49
	2.5.4 Chalcogenide Glass Fibers	50
	2.5.5 Plastic Optical Fiber	50
	2.5.6 Plastic Clad Silica Fiber	52

viii	Optoelectronic Devices and Optical Fiber Communication	
2.6	Fiber Fabrication Techniques	52
	2.6.1 Fiber Pulling from a Preform	52
	2.6.2 Fabrication of Fiber Preforms	54
	2.6.3 Fiber Fabrication Method Without Involving Preforms	58
2.7	Mechanical Properties of Optical Fibers	60
	Optical Fiber Cables	61
	Optical Fiber Cable Installation	64
	2.9.1 Installation of Cables in Underground Ducts	64
	2.9.2 Cable Installation Tension Calculation	64
	Summary	65
	Problems	66
	References	68
	3. LIGHTWAVE PROPAGATION IN OPTICAL WAVEGUIDES: MODE ANALYSIS	i
3.1	Generic Mode Equations	72
	3.1.1 Electromagnetic Waves	73
	3.1.2 Maxwell's Electromagnetic Equations in Non-homogeneous Medium	75
3.2	Modes in a Step-Index Planar Waveguide	78
	3.2.1 Transverse Electric (TE) Modes in a Symmetric Planar Waveguide	79
	3.2.2 Transverse Magnetic (TM) Modes in a Step-index Planar Waveguide	88
3.3	Power Associated with Modes in a Planar Waveguide	89
	Physical Interpretaion of Modes in a Planar Waveguide	90
	Modes in Cylindrical Optical Fibers	93
	3.5.1 Bound or Guided Modes	93
	3.5.2 Cladding Modes	94
	3.5.3 Leaky Modes	94
3.6	Formulation of Waveguide Equations in Cylindrical Coordinates	95
	3.6.1 The Normalised Frequency or V-number	100
	3.6.2 Boundary Conditions and Eigenvalue Equation	101
	3.6.3 Transverse Electric (TE) and Transverse Magnetic (TM) Modes	102
	3.6.4 Mode Cut-offs	105
	3.6.5 Relationship between Number of Modes and V-number	107
3.7	Linearly Polarised Modes	108
3.8	Power Flow in a Step-Index Optical Fiber	112
3.9	Single Mode Fibers	115
	3.9.1 Mode-Field Diameter (MFD)	116
	3.9.2 Birefringence in a Single-mode Fiber	117
.10	Mode Analysis for a Graded-Index (GI) Fiber	119
	Summary	124
	Problems	126
	References	128
	4. TRANSMISSION CHARACTERISTICS OF OPTICAL FIBERS	
	Attenuation or Loss in an Optical Fiber	130
4.2	Causes of Attenuation in Fibers	133

Contents	ix
4.2.1 Absorption Loss	133
4.2.2 Intrinsic Absorption	134
4.2.3 Extrinsic Absorption	135
4.2.4 Defect Loss	136
4.2.5 Scattering Loss	137
4.3 Bending Loss	141
4.3.1 Microbending Loss	141
4.3.2 Macrobending Loss	141
4.4 Core-Cladding Loss	143
4.5 Dispersion	144
4.5.1 Intersymbol Interference and Bandwidth	144
4.5.2 Intramodal Dispersion	148
4.6 Intermodal Dispersion	158
4.6.1 Pulse Broadening in a Multimode Step-index Fiber	159
4.6.2 RMS Pulse Broadening	160
4.6.3 Intermodal Dispersion in a Multimode Graded-index Fiber	162
4.6.4 Optimum Refractive-index Profile of a Graded-index Fiber	163
4.6.5 Mode Coupling	169
4.7 Dispersion Optimization of Single Mode Fibers	170
4.7.1 Dispersion-shifted Fiber (DSF)	170
4.7.2 Dispersion-flattened Fiber (DFF)	174
4.7.3 Polarization Maintaining Fibers	176
Summary	176
Problems	178
References	179
5. OPTICAL SOURCES	
5.1 Sources for Optical Fiber Communication	182

5.1 Sou	ces for Optical Fiber Communication	102
5.2 Selec	ted Topics from Semiconductor Devices	183
5.2.1	Energy Band Diagram: Direct and Indirect Bandgap Semiconductor	184
5.2.2	Compound Semiconductors	188
5.2.3	Intrinsic and Extrinsic Semiconductors	191
5.2.4	Compensated Semiconductors	194
5.2.5	<i>p-n</i> Junction Basics	195
5.2.6	Semiconductor Heterojunctions	197
5.2.7	Optical Source Materials	201
5.3 Ligh	t-Emitting Diode (LED) for Optical Fiber Communication	203
5.3.1	LED Power and Efficiency	204
5.4 LED	Structures: Homojunctions and Heterojunctions	211
5.4.1	Surface-emitting LED (SLED)	212
5.4.2	Edge-Emitting LED (ELED)	215
5.4.3	Super-Luminescent LED (SLD)	215
5.5 LED	Characteristics	217
5.5.1	Frequency Response	219
5.5.2	Optical Bandwidth	221

×	Optoelectronic Devices and Optical Fiber Communication	
	5.5.3 Electrical Bandwidth	223
	5.5.4 Power-bandwidth Product	224
	5.5.5 Spectral Response	227
5.6	Advanced LED Structures	229
	5.6.1 Resonant Cavity LED	229
	5.6.2 Quantum-Dot LED (QD-LED)	231
	5.6.3 Organic Light Emitting Diode (OLED)	231
5.7	Laser Sources	231
	5.7.1 Absorption, Spontaneous Emission, and Stimulated Emission	232
	5.7.2 The Einstein Relations	234
	5.7.3 Population Inversion	238
	5.7.4 Optical Feedback	240
5.8	Semiconductor Laser Diode	241
	5.8.1 Population Inversion and Optical Feedback in a Laser Diode	241
	5.8.2 Double Heterostructure (DH) Laser Diode	244
	5.8.3 Lasing Conditions	246
	5.8.4 Resonant Frequencies	250
	5.8.5 Laser Diode Rate Equations	253
	5.8.6 External Quantum Efficiency	256
	5.8.7 Longitudinal and Transverse Modes: Single-mode Operation	256
	5.8.8 Practical Laser Diode Structures	259
	5.8.9 DFB and DBR Laser Diodes	263
	5.8.10 Quantum-Well (QW) Laser	263
	5.8.11 Vertical Cavity Surface Emitting Laser (VCSEL) Diode	265
	5.8.12 Quantum-Wire (QWR) and Quantum-Dot (QD) Lasers	266
5.9	Transient Response and Modulation Capability of Laser Diode	267
	5.9.1 Transient Response	269
	5.9.2 Laser Modulation Bandwidth	271
5.10	Some Undesirable Effects in LASER	272
	5.10.1 Thermal Effects	272
	5.10.2 Aging Effects	274
	5.10.3 Frequency Chirp	274
	5.10.4 Noise	275
	5.10.5 Relative Intensity Noise (RIN)	276
	5.10.6 Mode Hopping	277
	5.10.7 Reliability Issues	278
	Summary	278
	Problems	280
	References	282
	6. LAUNCHING AND COUPLING OF OPTICAL POWER	
6.1	Need for Power Coupling	286

6.1 Need for Power Coupling	286
6.2 Characterisation of Radiation Pattern of Optical Sources	287
6.3 Coupling of Optical Power from a Lambertian Source-to-Fiber	290

		Contents	xi
	6.3.1	Power Coupling to a Step-index Fiber	292
	6.3.2	Power Coupling to a Graded-index Fiber	294
	6.3.3	Fresnel Reflection Loss	295
6.4	Powe	er Coupling Improvement Schemes	296
6.5	Coup	ling of Power from a Laser Source to a Fiber	299
6.6	Fiber	-to-Fiber Power Coupling	299
	6.6.1	Reflection Loss	301
	6.6.2	Other Intrinsic Losses	303
	6.6.3	Misalignment Loss	304
6.7	Fiber	Splices	309
	6.7.1	Endface Preparation	310
	6.7.2	Fusion Splices	311
	6.7.3	Mechanical Splices	312
	6.7.4	Multiple Splices	313
6.8	Fiber	Connectors	314
	6.8.1	ST Connector	315
	6.8.2	SC Connector	316
	6.8.3	LC Connector	316
	6.8.4	FC Connector	316
	6.8.5	Mating Dissimilar Connectors	317
	6.8.6	Expanded Beam Connector	317
	6.8.7	GRIN Lens Connector	318
	6.8.8	Return Loss Characteristics of Connectors	319
	Summ	nary	320
	Probl	lems	322
	Refer	ences	324

7. PHOTODETECTORS

7.1 Photodetector Requirements for Optical Communication	326
7.2 Types of Photodetector	327
7.3 Principle of Photogeneration	328
7.4 Mechanism of Photodetection	330
7.5 Characteristics of a General Photodetector	332
7.6 Photoconductors	334
7.7 p-i-n Photodetector	338
7.7.1 Quantum Efficiency	339
7.7.2 Frequency Response	341
7.7.3 Speed of Response	343
7.7.4 Noise Performance	345
7.8 Heterojunction Photodetectors	349
7.9 Advanced Heterojunction Photodetector Structures	349
7.9.1 Vertically Illuminated Heterojunction <i>p-i-n</i> Photodiode	350
7.9.2 Edge Illuminated Waveguide Photodetectors	350
7.9.3 Resonant Cavity-enhanced Photodiode	352

Optoelectronic Devices and Optical Fiber Communication

7.10	Schottky Barrier Photodetectors	353
7.11	Metal-Semiconductor-Metal (MSM) Photodetector	354
7.12	Avalanche Photodiodes	357
	7.12.1 Multiplication Gain	359
	7.12.2 Avalanche Multiplication Noise	362
	7.12.3 Noise Equivalent Power (NEP)	364
	7.12.4 III-V Semiconductor-based Avalanche Photodiodes	365
7.13	Charge Coupled Device (CCD) as an Image Sensor	370
7.14	Quantum Well Infrared Photodetector (QWIP)	373
7.15	Phototransistors	377
	7.15.1 Photo Bipolar Transistor	377
	7.15.2 Photo Field Effect Transistor	381
7.16	State-of-the-art Technology	382
	Summary	383
	Problems	384
	References	385

8. DIRECT DETECTION OPTICAL RECEIVERS

8.1	Inten	sity Modulation (IM)/Direct Detection (DD) System	392
	8.1.1	Noise Sources	393
	8.1.2	Excess Noise Factor	394
	8.1.3	Quantum Noise	395
	8.1.4	Quantum Limit	395
8.2	Recei	ver Configurations	397
	8.2.1	Frequency Domain Representation	399
	8.2.2	Low-impedance (LZ) Front-end	400
	8.2.3	High-impedance (HZ) Front-end	401
	8.2.4	Transimpedance (TZ) Front-end	402
8.3	Prear	nplifier	405
8.4	FET-I	based Receiver Front-End	406
8.5	State	-of-the-art Optical Receivers	408
	8.5.1	Heterojunction Field Transistors (HFET)-based Receivers	411
	8.5.2	Heterojunction Bipolar Transistor (HBT)-based Receivers	416
	8.5.3	Advanced Receivers	419
	Summ	nary	422
	Probl	lems	422
	Refer	ences	423

9. ANALOG AND DIGITAL OPTICAL LINK DESIGN		
9.1 A Typical Optical Fiber Link	429	
9.1.1 Optical Transmitters	430	
9.1.2 Analog LED Drive Circuits	431	
9.1.3 Digital LED Drive Circuits	436	
9.1.4 LASER Drive Circuits	438	

xii

	Contents	xiii
9.2	System Design	441
	9.2.1 Choice of Components	444
	9.2.2 Multiplexing	445
9.3	Digital Optical Link	445
	9.3.1 Digital Optical Receiver Design	446
	9.3.2 System Design Considerations	452
	9.3.3 Point-to-point Link Design	453
9.4	Link Power Budget	454
9.5	Dispersion-Equalization Penalty	459
9.6	Rise-Time Budget	460
9.7	Analog Systems	464
	9.7.1 Direct Intensity Modulation (D-IM)	465
	9.7.2 Subcarrier Double-sideband Intensity Modulation (DSB-IM)	469
	9.7.3 Subcarrier Frequency Modulation Followed by Intensity	
	Modulation (FM-IM)	469
	9.7.4 Multichannel Transmission	470
	Summary	470
	Problems	471
	References	474
	10. OPTICAL AND PHOTONIC COMPONENTS	
10.1	Optical Amplifiers	476
10.1	10.1.1 Semiconductor LASER Amplifier (SLA)	478
	10.1.2 Fiber Amplifiers	483
10.2	Elements of Integrated Optics (IO)	488
	10.2.1 Planar Waveguides	488
	10.2.2 Optical Modulators	492
	10.2.3 Electro-optic Modulators	493
	10.2.4 Phase Modulator	494
	10.2.5 Acousto-optic Modulator	497
	10.2.6 Optical Beam Splitters, Directional Couplers, and Switches	498
	10.2.7 Electro-optical Switches	499
	10.2.8 Mach-Zehnder (MZ) Interferometer	500
	Summary	500
	Problems	502
	References	503
1	1. ADVANCED OPTICAL COMMUNICATION SYSTEMS AND OPTICAL N	IETWORKS
	Evolution of Optical Communication Technology	505
	Wavelength Division Multiplexing	505
	Dense Wavelength Division Multiplexing (DWDM)	506
11.0	11.3.1 International Telecommunication Union (ITU-T)	509
11 4	Passive Dense Wavelength Division Multiplexing Components	511
11.1	11.4.1 Beam Splitters/Couplers	511
	11.4.2 Fused Fiber Couplers	513
	L	

Optoelectronic Devices and Optical Fiber Communication

11.4.3 2 × 2 Couplers	513
11.4.4 Star Coupler	518
11.4.5 Multiplexers and Demultiplexers	521
11.4.6 Fiber Grating Filter (Demultiplexer)	521
11.4.7 Interference Filter-based WDM Devices	524
11.4.8 Mach-Zehnder (MZ) Interferometer-based Multiplexer	525
11.4.9 Design and Application of Fiber Bragg Grating Demultiplexer	527
11.5 Active WDM Components	528
11.5.1 Tunable Laser Sources	528
11.5.2 Tunable Filters	530
11.6 Elements of Optical Networks	532
11.6.1 Basic Network Terminologies	532
11.6.2 Network Topology	533
11.6.3 Active Optical Coupler	534
11.6.4 Passive Optical Coupler	536
11.7 Power Budget	537
11.8 Synchronous Optical Network (SONET)/Synchronous Digital	
Hierarchy (SDH)	538
11.9 Transmission Format	538
11.10 Soliton	540
Summary	542
Problems	543
References	545
12. OPTICAL FIBER MEASUREMENT AND TESTING	
12.1 Measurement Aspects	548
12.2 Measurement Standards	549
12.3 Types of Test Equipment	551
12.3.1 Optical Power Meter	551
12.3.2 Optical Attenuators	553
12.3.3 Tunable Laser Sources	553
12.3.3 Tunable Laser Sources 12.3.4 Optical Spectrum Analyser	554
12.3.3 Tunable Laser Sources 12.3.4 Optical Spectrum Analyser 12.3.5 Optical Time Domain Reflectometer (OTDR)	
 12.3.3 Tunable Laser Sources 12.3.4 Optical Spectrum Analyser 12.3.5 Optical Time Domain Reflectometer (OTDR) 12.4 Measurement and Test Procedures 	554 555 557
 12.3.3 Tunable Laser Sources 12.3.4 Optical Spectrum Analyser 12.3.5 Optical Time Domain Reflectometer (OTDR) 12.4 Measurement and Test Procedures 12.4.1 Attenuation 	554 555 557 557
 12.3.3 Tunable Laser Sources 12.3.4 Optical Spectrum Analyser 12.3.5 Optical Time Domain Reflectometer (OTDR) 12.4 Measurement and Test Procedures 12.4.1 Attenuation 12.4.2 Dispersion Measurement 	554 555 557 557 559
 12.3.3 Tunable Laser Sources 12.3.4 Optical Spectrum Analyser 12.3.5 Optical Time Domain Reflectometer (OTDR) 12.4 Measurement and Test Procedures 12.4.1 Attenuation 12.4.2 Dispersion Measurement 12.5 Measurement with OTDR 	554 555 557 557 559 563
 12.3.3 Tunable Laser Sources 12.3.4 Optical Spectrum Analyser 12.3.5 Optical Time Domain Reflectometer (OTDR) 12.4 Measurement and Test Procedures 12.4.1 Attenuation 12.4.2 Dispersion Measurement 12.5 Measurement with OTDR 12.6 Eye Diagrams 	554 555 557 557 559 563 564
 12.3.3 Tunable Laser Sources 12.3.4 Optical Spectrum Analyser 12.3.5 Optical Time Domain Reflectometer (OTDR) 12.4 Measurement and Test Procedures 12.4.1 Attenuation 12.4.2 Dispersion Measurement 12.5 Measurement with OTDR 12.6 Eye Diagrams 12.7 Measurement with Optical Spectrum Analyser 	554 555 557 559 563 564 566
 12.3.3 Tunable Laser Sources 12.3.4 Optical Spectrum Analyser 12.3.5 Optical Time Domain Reflectometer (OTDR) 12.4 Measurement and Test Procedures 12.4.1 Attenuation 12.4.2 Dispersion Measurement 12.5 Measurement with OTDR 12.6 Eye Diagrams 12.7 Measurement with Optical Spectrum Analyser Summary 	554 555 557 559 563 564 566 566
 12.3.3 Tunable Laser Sources 12.3.4 Optical Spectrum Analyser 12.3.5 Optical Time Domain Reflectometer (OTDR) 12.4 Measurement and Test Procedures 12.4.1 Attenuation 12.4.2 Dispersion Measurement 12.5 Measurement with OTDR 12.6 Eye Diagrams 12.7 Measurement with Optical Spectrum Analyser Summary Problems 	554 555 557 559 563 564 566 566 567
 12.3.3 Tunable Laser Sources 12.3.4 Optical Spectrum Analyser 12.3.5 Optical Time Domain Reflectometer (OTDR) 12.4 Measurement and Test Procedures 12.4.1 Attenuation 12.4.2 Dispersion Measurement 12.5 Measurement with OTDR 12.6 Eye Diagrams 12.7 Measurement with Optical Spectrum Analyser Summary 	554 555 557 559 563 564 566 566
 12.3.3 Tunable Laser Sources 12.3.4 Optical Spectrum Analyser 12.3.5 Optical Time Domain Reflectometer (OTDR) 12.4 Measurement and Test Procedures 12.4.1 Attenuation 12.4.2 Dispersion Measurement 12.5 Measurement with OTDR 12.6 Eye Diagrams 12.7 Measurement with Optical Spectrum Analyser Summary Problems 	554 555 557 559 563 564 566 566 567
 12.3.3 Tunable Laser Sources 12.3.4 Optical Spectrum Analyser 12.3.5 Optical Time Domain Reflectometer (OTDR) 12.4 Measurement and Test Procedures 12.4.1 Attenuation 12.4.2 Dispersion Measurement 12.5 Measurement with OTDR 12.6 Eye Diagrams 12.7 Measurement with Optical Spectrum Analyser Summary Problems References 	554 555 557 559 563 564 566 566 567 568

xiv

Symbol	Meaning
а	Fiber core radius
A_S	Emission area, area of cross-section
A _c	Carrier amplitude
A_m	Amplitude of the modulating signal
A _{common}	Common area of overlapping of two fibers
A ₂₁	Einstein's coefficient
B ₀	Brightness of the source along the direction normal to the plane of emission
B_{\perp}	Brightness of the source in the direction perpendicular to the emission plane
B _{II}	Brightness of the source in the direction parallel to the emitting surface
В	Bandwidth
$B_{12'} B_{21}$	Einstein's coefficient
B _F	Modal birefringence
B _{max}	Maximum 3-dB bandwidth
B _{mod}	Bandwidth of a fiber limited by modal dispersion
B _r	Recombination coefficient
B _T	Transmission bandwidth of FM
b	Normalized propagation constant
С	Capacitance, constant
C _a	Input capacitance of the receiver amplifier
C _d	Capacitance of the photodetector
C_{f}	Capacitance associated with the feedback resistor
C _j	Junction capacitance of the photodetector
C _T	Total capacitance
С	Velocity of light in free space
C _t	Transmitter coupling loss
C _r	Receiver coupling loss
D	Total intramodal/chromatic dispersion of a fiber in ps nm ⁻¹
D _{mat}	Material dispersion of a fiber in ps nm ⁻¹ km ⁻¹
D _{tot}	Total material dispersion in ps nm ⁻¹ km ⁻¹
D_{wg}	Waveguide dispersion of a fiber in ps nm ⁻¹ per km ⁻¹
D _{pro}	Profile dispersion
D_{PMD}	Average value of polarization mode dispersion measured in ps/ \sqrt{km}
D_f	Frequency deviation ratio of FM

Symbol	Meaning
D_L	Dispersion equalization penalty
d	Diameter of the fiber core
Ε	Electronic energy
E_F	Fermi energy
E_g	Bandgap energy
F _n	Noise figure
F(M)	Excess noise factor
f	Frequency
f_m	Frequency of the modulating signal
f_{LO}	Local oscillator frequency
f_{IF}	Intermediate frequency
f _{3dB}	3-dB bandwidth of a photodetector
G	Open loop gain
G_s	Single-pass gain
8	Degeneracy factor; laser cavity gain
8 _m	Transconductance of FET
8 _{th}	Threshold gain for lasing
H(f)	Transfer function
$H_{OL}(f)$	Open loop transfer function
$H_{CL}(f)$	Closed loop transfer function
$H_{out}(f)$	Transfer function of optical receiver output
h	Planck constant
h _{eff}	Effective height of the planar waveguide
$h_p(t)$	Input pulse shape to an optical receiver
$h_{out}(t)$	Output pulse shape
Ι	Electrical current/optical intensity
I_B	Current produced in a photodetector due to background radiation
I_D	Dark current in a photodetector
I _{eq}	Equivalent photodetector current
I_P	Average photocurrent
I _{th}	Threshold current for lasing of ILD
I_0	Reverse saturation current
i _{det}	Photodetector current
$i_p(t)$	Time-varying photogenerated current in a photodetector
i _{det}	Output current of a photodetector
$\langle i_s^2 \rangle$	Mean square value of the shot-noise current
$\langle i_T^2 \rangle$	Mean square value of the thermal noise current

Symbol	Meaning
$J_n(x)$	Bessel function of the first kind of order <i>n</i> and argument <i>x</i>
J _{th}	Threshold current density of an ILD
j	$\sqrt{(-1)}$
k	Boltzmann constant/free space propagation constant/ratio of the ionization coefficient
k_1	Propagation constant in the core region
k_2	Propagation constant in core region
L	Fiber length
L_B	Beat length in a single- mode fiber
L_{RS}	Loss due to Rayleigh scattering
S_l	Splice loss in dB
D_L	Dispersion power penalty
P_T	Transmitted power
Р	Total power carried by the fiber
P _{core}	Power carried by fiber core
P_{clad}	Power carried by fiber cladding
P_R	Received power
t_r	Rise-time of an RC circuit
T_R	Receiver rise-time in nano-second
T_C	Fiber rise-time due to chromatic dispersion
t_{FWHM}	Time corresponding to full-width half-maximum
p(t)	Gaussian pulse in the time domain
$P_{op}(t)$	Time-varying optical power from of an intensity-modulated optical transmitter
P(f)	Fourier transform of the pulse $p(t)$
R_T	Effective resistance value of bias and amplifier resistances
T_{sys}	System rise-time in nano-second
q	Electronic charge
i ² _{signal}	Mean square value of the signal current
F_n	Noise figure of an amplifier
S	Signal power
Ν	Noise power; Group refractive index
S/N	Signal-to-noise power ratio
m^2	Mean square gain of an APD
Μ	Average gain of an APD; total number of modes in a fiber
M_1	Mean value (first temporal moment)
M_2	Mean-square value (second temporal moment)
$M_{e\!f\!f}$	Effective number of modes in a curved graded-index fiber
р	Average photoelectric constant for Rayleigh scattering

xvii

\cap	ataoloatropia	Dovidoor	and (Ontional	Elbor	Communication	
	JIOGIECIIONIC	Devices	ana u	Jpiicai	FIDEI	Communication	

Symbol	Meaning
P_B	Threshold optical power for stimulated Brillouin scattering
P_R	Threshold optical power required for stimulated Raman scattering
R _a	Amplifier resistance
R _b	Photodetector bias resistance
R_L	Load resistance
R _c	Critical radius of curvature for macro-bending of a multimode fiber
R _{cs}	Critical radius of curvature for macro-bending of a single mode fiber
r	Electro-optic coefficient
T_F	Fictive temperature
T _{max}	Time taken by the most oblique ray to travel a length L along the fiber
T_{min}	Time taken by the axial ray to travel a length <i>L</i> along the fiber
N_1	Group refractive index in the core of a fiber
п	Refractive index of any material
<i>n</i> ₁	Core refractive index
<i>n</i> ₂	Cladding refractive index
n(r)	Refractive index of the fiber material as a function of radial distance
n(0)	Refractive index of a graded-index fiber at the centre or axis of the core
n(a)	Refractive index of a graded-index fiber at the core-cladding interface and inside cladding
n(E)	Electric field dependent refractive index
V	V-number or normalized frequency of a fiber
$K_n(x)$	Modified Bessel function of the second kind of order n and argument x
V_{π}	Voltage required to create a phase difference of π in an electro-optic modulator
Р	Total optical power carried by a fiber
P _{core}	Power carried by the core of the fiber
P _{clad}	Power carried by the cladding of the fiber
Т	Absolute temperature
T_b	Bit period
B_T	Bit rate
B _e	Bit-error rate
<i>n</i> ₀	Electron concentration in thermal equilibrium
p_0	Hole concentration in thermal equilibrium
N _c	Effective density of state in the conduction band
N_v	Effective density of state in the valence band
m^+n	Effective mass of electrons
m^+p	Effective mass of holes
E _c	Conduction band energy
E_v	Valence band energy

Symbol	Meaning
E_F	Fermi level energy
n _i	Intrinsic carrier concentration
N_D	Donor concentration
N_A	Acceptor concentration
V_0	Built-in potential
J	Bias current density
d	Thickness of the active layer
r _r	Radiative recombination rate
r _{nr}	Non-radiative recombination rate
R _r	Total radiative recombination rate
R _{nr}	Total non-radiative recombination rate
P _{int}	Optical power generated within LED
N _T	Trap density
v_{th}	Thermal velocity
R _{AU}	Rate of Auger recombination
С	Auger recombination coefficient
T(0)	Fresnel transmission coefficient for normal incidence
P _{emitted}	Emitted optical power
S	Surface recombination velocity
D_n	Diffusion coefficient of electrons
L _n	Electron diffusion length
f_{3dB}	3-dB bandwidth
$f_{(3dB-op)}$	3-dB optical bandwidth
$f_{(3dB-el)}$	3-dB electrical bandwidth
E_1	Energy corresponding to state 1
E_2	Energy corresponding to state 2
N_1	Population in the energy state E ₁
N_2	Population in energy state E ₂
R ₁₂	Rate of absorption in presence of a radiation field
$(R_{21})_{sp}$	Spontaneous emission rate
$(R_{21})_{st}$	Spontaneous emission rate
D	Normalized waveguide thickness
I(z)	Optical field intensity at any point <i>z</i>
g(0)	Gain of the cavity at the peak wavelength
R_1	Reflection coefficient of the front mirror of the FP laser
R ₂	Reflection coefficient of the rear mirror of the FP laser
t _d	Time delay between the application of the current pulse and attaining lasing threshold
f_r	Relaxation oscillation frequency

xix

Symbol	Meaning		
$\langle P_e^2 \rangle$	Square of the mean optical power		
$S_{RIN}(f)$	Power spectral density of relative intensity noise		
P_s	Power emitted by the source		
P_F	Power coupled to the fiber		
$P_{coupled}$	Power coupled to the fiber after Fresnel reflection		
A_f	Fiber area		
n _{th}	Threshold carrier density		
r _s	Radius of the circular emitting area of the source		
r _L	Radius of the micro-spherical lens		
v_{in}	Input voltage		
v_{out}	Output voltage		
v _g	Group velocity		
f_p	Fraction of the bundle area covered by the fiber core		
L _F	Loss encountered at the fiber-to-fiber joint		
L _{lat}	Loss due to lateral misalignment of the fibers		
R _f	Feedback resistance of the TZ amplifier		
В	Magnetic induction		
$B(\theta, \Phi)$	Brightness or radiance of an optical source		
$\langle \delta P_e^2 \rangle$	Mean square value of power fluctuation		
D	Electric displacement		
З	Electric field vector		
\mathcal{H}	Magnetic field		
Ĺ	Total loss/attenuation of a fiber in dB		
α_{f}	Average loss in the fiber per km		
τ	(1/e) –full width pulse broadening due to dispersion		
$ au_{wg}$	Group delay due to waveguide dispersion		
τ	Mean lifetime of carriers		
α	Absorption coefficient per km		
σ	RMS pulse spreading due to dispersion; capture cross-section		
$\sigma_{intramodal}$	RMS pulse spreading due to intramodal dispersion		
σ_{modal}	RMS pulse spreading due to intermodal dispersion		
τ_{mat}	Group delay due to material dispersion		
σ_{mat}	RMS pulse spreading due to material dispersion		
σ_{λ}	RMS spectral width of the source		
σ_0	RMS pulse broadening in absence of mode coupling		
σ_{c}	RMS pulse broadening in presence of mode coupling		
R	Responsivity of a photodetector; Fresnel reflection coefficient		

Symbol	Meaning
δau_{pol}	Delay difference because of polarization mode dispersion
τ_{gx}	Group delay in <i>x</i> -direction (H-polarization)
$ au_{gy}$	Group delay in <i>y</i> -direction (V-polarization)
v_{gx}	Group velocity in <i>x</i> -direction
v _{gy}	Group velocity in <i>y</i> -direction
μ	Index of modulation in the case of intensity modulation
ν	Frequency of the optical signal
η	Quantum efficiency
η_{int}	Internal quantum efficiency
η_{ext}	External quantum efficiency
δ_{pol}	Differential group delay due to birefringence
δT_{mod}	Delay difference between the highest and lowest order mode
α	Attenuation (dB/km) in a fiber; absorption coefficient; electron ionization coefficient; profile index factor of a graded-index fiber
α_n	Attenuation coefficient of a fiber in nepers
$\alpha_I(l,m)$	Attenuation coefficient for a mode of order (l, m)
$\alpha(r)$	Attenuation coefficient at any radial distance r from the centre of a graded-index fiber
α_r	Bending loss
α_{IR}	Attenuation due to infrared absorption
α_{SR}	Attenuation in dB due to Rayleigh scattering
α_{uv}	Attenuation due to ultraviolet absorption
α	Average loss in a laser cavity
$\alpha(\lambda)$	Absorption coefficient of a material as a function of wavelength
Г	Confinement factor
β	Spontaneous emission coefficient; hole ionization coefficient; z-component of the propagation constant
β_c	Isothermal compressibility
γ_R	Rayleigh scattering coefficient
ϕ_c	Critical angle measured with respect to the normal drawn on the plane of incidence
Φ_s	Total phase-shift associated with a single-pass optical amplifier
Δ	Refractive index deviation
λ	Wavelength of light
θ_c	Critical angle measured with respect to the axis of the fiber
$\theta_{0 max}$	Maximum acceptance angle for rays to enter into the fiber
Ω	Solid acceptance angle of a fiber

xxi

Symbol	Meaning
ω	Angular frequency
ζ	Electro-optic coefficient
$ au_{wg}$	Time delay due to waveguide dispersion
ΔE_g	Energy bandgap difference in a heterojunction
ΔE_c	Energy corresponding to conduction band-edge discontinuity
ΔE_v	Energy corresponding to valence band-edge discontinuity
δ_p	Energy separation between the Fermi level and the valence band edge
δ _n	Energy separation between the Fermi level and the conduction band edge
τ_{SRH}	Mean lifetime of the carriers due to Shockley-Read-Hall recombination
τ_{AU}	Mean lifetime of carriers due to Auger recombination
Δn	Excess photogenerated carriers (electrons)
τ	Mean lifetime of the carriers
τ_r	Mean lifetime of the carriers for radiative recombination
τ_{nr}	Mean lifetime of the carriers for non-radiative recombination
$ au_{e\!f\!f}$	Effective mean lifetime of the carriers
ω_{3dB}	3-dB angular frequency bandwidth
ρ(ν)	Radiation field density
$\Delta \nu$	Frequency separation between two adjacent modes of a FP laser diode
Δλ	Wavelength separation between two adjacent modes of a FP laser diode
$ au_{sp}$	Spontaneous emission lifetime of the carriers
τ_{st}	Stimulated emission lifetime of carriers
$ au_{ph}$	Photon lifetime of the carriers
Φ	Photon flux density
$\Phi_{_{S}}$	Steady-state photon flux density
$T(\Phi)$	Fresnel transmission coefficient for an angle of incidence of Φ
$P(\omega)$	Power spectrum of LED output
$g(\lambda)$	Gain of the laser cavity as a function of wavelength
<i>m</i> (β)	Number of modes in a graded-index fiber for a given propagation constant
θ_{\parallel}	Angular width of the beam in direction parallel to the plane of the p - n junction
θ_{\perp}	Angular width of the beam in the direction perpendicular to the plane of the p - n junction
η_F	Fiber-to-fiber coupling efficiency
η_{lat}	Coupling efficiency due to lateral misalignment

List of Abbreviations

Abbreviation	Meaning
A/D	Analog to digital
AC	Alternating current
AGC	Automatic gain control
AM	Amplitude modulation
APD	Avalanche photodiode
ASK	Amplitude shift keying
ATM	Asynchronous transmission mode
BER	Bit error rate
CATV	Common antenna television
CCITT	International Telephone and Telegraph Consultative Committee
CCTV	Closed circuit television
CNR	Carrier-to-noise ratio
CW	Continuous wave
CWDM	Coarse wavelength division multiplexing
D/A	Digital to analog
dB	Decibel
DBR	Distributed Bragg reflector
dBm	Decibel with reference to 1 mW power
D-IM	Direct intensity modulation
DC	Depressed cladding
DC	Direct current
DF	Dispersion flattened
DFB	Distributed feedback
DH	Double heterostructure
DPSK	Differential phase shift keying
DS	Dispersion shifted
DSB	Double sideband
DWDM	Dense wavelength division multiplexing
EDFA	Erbium doped fiber amplifier
EIA	Electronics Industries Association
ELED	Edge-emitter light emitting diode
EMI	Electromagnetic interference
erf	Error function
erfc	Complementary error function
FA	Fiber amplifier

Abbreviation	Meaning
FBT	Fiber biconical taper
FDM	Frequency division multiplexing
FET	Field effect transistor
FM	Frequency modulation
FOTP	Fiber optic test procedure
FPA	Fabry-Pérot amplifier
FSK	Frequency-shift keying
FWHP	Full width half power
FWHM	Full-width half maximum
GI	Graded index (fiber)
GRIN	Graded-index (rod lens)
HB	High birefringence
HBT	Heterojunction bipolar transistor
HEMT	High electron mobility transistor
He-Ne	Helium-Neon (LASER)
NF	High frequency
IF	Intermediate frequency
ILD	Injection laser diode
IM-DD	Intensity modulation-direct detection
IO	Integrated optics
I-O	Input-output
ISI	Intersymbol interference
ISDN	Integrated services digital network
LAN	Local area network
LB	Low birefringence
LED	Light-emitting diode
LP	Linearly polarized
LPE	Liquid phase epitaxy
MAN	Metropolitan area network
MBE	Molecular beam epitaxy
MC	Matched cladding
MCVD	Modified chemical vapor deposition
MESFET	Metal semiconductor field effect transistor
MFD	Mode field diameter
MISFET	Metal insulator field effect transistor
MMF	Multimode fiber
MOSFET	Metal-oxide semiconductor field effect transistor
MOVPE	Metal organic vapor phase epitaxy
MQW	Multiquantum well
MSM	Metal-semiconductor-metal

List of Abbreviations

Abbreviation	Meaning
NRZ	Non-return to zero
OEIC	Optoelectronic integrated circuit
OFDM	Optical frequency division multiplexing
OOK	On-off keying
OTDR	Optical time domain reflectometer
OVPO	Outside vapor phase oxidation
РСМ	Pulse code modulation
PCS	Plastic clad silica (fiber)
PCVD	Plasma-activated chemical vapour deposition
PD	Photodiode
PDF	Probability distribution function
<i>p-i-n-</i> PET	p-i-n-photodetector followed by PET
PLL	Phase locked loop
PM	Phase modulation
PMF	Polarization maintaining fiber
PoLSK	Polarization shift keying
PON	Passive optical network
PSK	Phase-shift keying
RAPD	Reach-through avalanche photodiode
RIN	Relative intensity noise
RMS (rms)	Root mean square
RO	Relaxation oscillator
RZ	Return to zero
SAM	Separate absorption and multiplication (APD)
SAW	Surface acoustic wave
SBS	Stimulated Brillouin scattering
SC	Subcarrier connector
SCM	Subcarrier multiplexing
SDH	Synchronous digital hierarchy
SDM	Space division multiplexing
SHF	Super high frequency
SI	Step-index (fiber)
SL	Superlattice
SLA	Semiconductor laser amplifier
SLD	Semiconductor laser diode
SLED	Surface emitting LED
SMF	Single mode fiber
SNR	Signal-to-noise ratio
SONET	Synchronous optical network
SOP	State of polarization

xxv

Abbreviation	Meaning
SQW	Single quantum well
SRS	Stimulated Raman scattering
ST	Straight tip
TDM	Time-division multiplexing
TDMA	Time division multiple access
TE	Transverse electric
TEM	Transverse electromagnetic
TM	Transverse magnetic
TWA	Traveling wave amplifier
UHF	Ultra high frequency
VAD	Vapour axial deposition
VCO	Voltage controlled oscillator
VHF	Very high frequency
VPE	Vapour phase epitaxy
VSB	Vestigial sideband
WDM	Wavelength-division multiplexing
WKB	Wenzel-Kramer-Brillouin (method)
ZMD	Zero material dispersion
ZTD	Zero total dispersion

xxvi